Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China

PLoS One. 2015 Jun 29;10(6):e0131878. doi: 10.1371/journal.pone.0131878. eCollection 2015.

Abstract

Differential Optical Absorption Spectroscopy (DOAS) was used for the long-term observation of ground-level ozone (O3) from March 2010 to March 2013 over Shanghai, China. The 1-hour average concentration of O3 was 27.2 ± 17.0 ppbv. O3 level increased during spring, reached the peak in late spring and early summer, and then decreased in autumn and finally dropped to the bottom in winter. The highest monthly average O3 concentration in June (41.1 ppbv) was nearly three times as high as the lowest level recorded in December (15.2 ppbv). In terms of pollution episodes, 56 hourly samples (on 14 separate days) in 2010 exceeded the 1-hour ozone limit of 200 μg/m3 specified by the Grade II of the Chinese Ambient Air Quality Standards (CAAQS, revised GB 3095-2012). Utilizing the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the primary contribution to high ozone days (HODs) was identified as the regional transportation of volatile organic compounds (VOC) and high concentrations of O3 from the chemical industrial zone in the Jinshan district of Shanghai. HODs showed higher concentrations of HONO and NO2 than non-episode conditions, implying that HONO at high concentration during HODs was capable of increasing the O3 concentration. The photolysis rate of HONO was estimated, suggesting that the larger number of OH radicals resulting from high concentrations of HONO have a considerable impact on ozone concentrations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Environmental Monitoring
  • Environmental Pollution / analysis
  • Ozone / analysis*
  • Volatile Organic Compounds / analysis

Substances

  • Volatile Organic Compounds
  • Ozone

Grants and funding

This work was partially supported by the National Natural Science Foundation of China under grant No. 21477021, 21277029, 40975076, 41405117, Science and Technology Commission of Shanghai Municipality (Grant: 12DJ1400102), China Meteorological Administration (Grant: GYHY201106045-8), and National Hightech R&D Program (“863” Program, No. 2006AA06Z417). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.