DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea

Appl Microbiol Biotechnol. 2015 Dec;99(23):10215-24. doi: 10.1007/s00253-015-6892-7. Epub 2015 Aug 14.

Abstract

The GntR-family transcription regulator, DasR, was previously identified as pleiotropic, controlling the primary amino sugar N-acetylglucosamine (GlcNAc) and chitin metabolism in Saccharopolyspora erythraea and Streptomyces coelicolor. Due to the remarkable regulatory impact of DasR on antibiotic production and development in the model strain of S. coelicolor, we here identified and characterized the role of DasR to secondary metabolite production and morphological development in industrial erythromycin-producing S. erythraea. The physiological studies have shown that a constructed deletion of dasR in S. erythraea resulted in antibiotic, pigment, and aerial hyphae production deficit in a nutrient-rich condition. DNA microarray assay, combined with quantitative real-time reverse transcription PCR (qRT-PCR), confirmed these results by showing the downregulation of the genes relating to secondary metabolite production in the dasR null mutant. Notably, electrophoretic mobility shift assays (EMSA) showed DasR as being the first identified regulator that directly regulates the pigment biosynthesis rpp gene cluster. In addition, further studies indicated that GlcNAc, the major nutrient signal of DasR-responsed regulation, blocked secondary metabolite production and morphological development. The effects of GlcNAc were shown to be caused by DasR mediation. These findings demonstrated that DasR is an important pleiotropic regulator for both secondary metabolism and morphological development in S. erythraea, providing new insights for the genetic engineering of S. erythraea with increased erythromycin production.

Keywords: DasR; Morphological development; Saccharopolyspora erythraea; Secondary metabolism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylglucosamine / metabolism
  • Anti-Bacterial Agents / biosynthesis*
  • DNA, Bacterial / metabolism
  • Electrophoretic Mobility Shift Assay
  • Erythromycin / biosynthesis
  • Gene Deletion
  • Gene Expression Profiling
  • Gene Expression Regulation, Bacterial / drug effects
  • Genes, Regulator*
  • Microarray Analysis
  • Pigments, Biological / biosynthesis*
  • Protein Binding
  • Real-Time Polymerase Chain Reaction
  • Saccharopolyspora / genetics*
  • Saccharopolyspora / growth & development
  • Saccharopolyspora / metabolism*

Substances

  • Anti-Bacterial Agents
  • DNA, Bacterial
  • Pigments, Biological
  • Erythromycin
  • Acetylglucosamine