Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition

PLoS One. 2015 Oct 8;10(10):e0140381. doi: 10.1371/journal.pone.0140381. eCollection 2015.

Abstract

Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Neoplasms / classification
  • Brain Neoplasms / diagnosis*
  • Glioma / classification
  • Glioma / diagnosis*
  • Humans
  • Image Interpretation, Computer-Assisted
  • Magnetic Resonance Imaging
  • Meningioma / classification
  • Meningioma / diagnosis*
  • Sensitivity and Specificity

Grants and funding

This work was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (http://kjzc.jhgl.org/) under grant (No. 2012BAI14B02), the National Natural Science Foundation of China (http://www.nsfc.gov.cn/) under grant (No. 81101109 and No. 31371009), the National High Technology Research and Development Program of China (863 Program) (http://www.863.gov.cn/) under grant (No. 2012AA02A616), Program of Pearl River Young Talents of Science and Technology in Guangzhou (http://www.gzsi.gov.cn/) under grant (No. 2013J2200065), and Program of Pearl River Young Talents of Science and Technology in Guangzhou (http://www.gzsi.gov.cn/) under grant (No. 2012J2200041). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.