Substance P mediates pro-inflammatory cytokine release form mesenteric adipocytes in Inflammatory Bowel Disease patients

Cell Mol Gastroenterol Hepatol. 2015 Jul 1;1(4):420-432. doi: 10.1016/j.jcmgh.2015.03.003.

Abstract

Background & aims: Substance P (SP), neurokinin-1 receptors (NK-1Rs) are expressed in mesenteric preadipocytes and SP binding activates proinflammatory signalling in these cells. We evaluated the expression levels of SP (Tac-1), NK-1R (Tacr-1), and NK-2R (Tacr-2) mRNA in preadipocytes isolated from patients with Inflammatory Bowel Disease (IBD) and examined their responsiveness to SP compared to control human mesenteric preadipocytes. The Aim of our study is to investigate the effects of the neuropeptide SP on cytokine expression in preadipocytes of IBD vs control patients and evaluate the potential effects of these cells on IBD pathophysiology via SP-NK-R interactions.

Methods: Mesenteric fat was collected from control, Ulcerative colitis (UC) and Crohn's disease (CD) patients (n=10-11 per group). Preadipocytes were isolated, expanded in culture and exposed to substance P. Colon biopsies were obtained from control and IBD patients.

Results: Tacr-1 and -2 mRNA were increased in IBD preadipocytes compared to controls, while Tac-1 mRNA was increased only in UC preadipocytes. SP differentially regulated the expression of inflammatory mediators in IBD preadipocytes compared to controls. Disease-dependent responses to SP were also observed between UC and CD preadipocytes. IL-17A mRNA expression and release increased after SP treatment in both CD and UC preadipocytes, while IL-17RA mRNA increased in colon biopsies from IBD patients.

Conclusions: Preadipocyte SP-NK-1R interactions during IBD may participate in IBD pathophysiology. The ability of human preadipocytes to release IL-17A in response to SP together with increased IL-17A receptor in IBD colon opens the possibility of a fat-colonic mucosa inflammatory loop that may be active during IBD.

Keywords: Cytokines; Interleukin-17; Substance P; preadipocytes.