Cardiac Optogenetics: Enhancement by All-trans-Retinal

Sci Rep. 2015 Nov 16:5:16542. doi: 10.1038/srep16542.

Abstract

All-trans-Retinal (ATR) is a photosensitizer, serving as the chromophore for depolarizing and hyperpolarizing light-sensitive ion channels and pumps (opsins), recently employed as fast optical actuators. In mammalian optogenetic applications (in brain and heart), endogenous ATR availability is not considered a limiting factor, yet it is unclear how ATR modulation may affect the response to optical stimulation. We hypothesized that exogenous ATR may improve light responsiveness of cardiac cells modified by Channelrhodopsin2 (ChR2), hence lowering the optical pacing energy. In virally-transduced (Ad-ChR2(H134R)-eYFP) light-sensitive cardiac syncytium in vitro, ATR supplements ≤2 μM improved cardiomyocyte viability and augmented ChR2 membrane expression several-fold, while >4 μM was toxic. Employing integrated optical actuation (470 nm) and optical mapping, we found that 1-2 μM ATR dramatically reduced optical pacing energy (over 30 times) to several μW/mm(2), lowest values reported to date, but also caused action potential prolongation, minor changes in calcium transients and no change in conduction. Theoretical analysis helped explain ATR-caused reduction of optical excitation threshold in cardiomyocytes. We conclude that cardiomyocytes operate at non-saturating retinal levels, and carefully-dosed exogenous ATR can enhance the performance of ChR2 in cardiac cells and yield energy benefits over orders of magnitude for optogenetic stimulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Cell Survival / drug effects
  • Cells, Cultured
  • Channelrhodopsins
  • Giant Cells / drug effects
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / physiology*
  • Optogenetics*
  • Photosensitizing Agents / pharmacology*
  • Rats, Sprague-Dawley
  • Retinaldehyde / pharmacology*

Substances

  • Channelrhodopsins
  • Photosensitizing Agents
  • Retinaldehyde