Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients

Oncotarget. 2015 Dec 8;6(39):41497-507. doi: 10.18632/oncotarget.6359.

Abstract

Background: Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients.

Methods: In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker.

Results: We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker.

Conclusions: We identified here donor-derived stem cells within skin SCC in kidney-transplant recipients. They were located in invasive areas of SCC and had EMT characteristics.

Keywords: Pathology Section; chimerism; epithelial mesenchymal transition; kidney transplant; squamous cell carcinoma; stem-cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AC133 Antigen
  • Adolescent
  • Adult
  • Antigens, CD / analysis
  • Biomarkers, Tumor / analysis
  • Biomarkers, Tumor / genetics
  • Cadherins / genetics
  • Carcinoma, Squamous Cell / chemistry
  • Carcinoma, Squamous Cell / etiology*
  • Carcinoma, Squamous Cell / genetics
  • Carcinoma, Squamous Cell / pathology
  • Cell Transformation, Neoplastic / chemistry
  • Cell Transformation, Neoplastic / genetics
  • Cell Transformation, Neoplastic / pathology*
  • Chromosomes, Human, X
  • Chromosomes, Human, Y
  • Epithelial-Mesenchymal Transition*
  • Female
  • Genotype
  • Glycoproteins / analysis
  • Humans
  • Keratosis, Actinic / etiology*
  • Keratosis, Actinic / genetics
  • Keratosis, Actinic / metabolism
  • Keratosis, Actinic / pathology
  • Kidney Transplantation / adverse effects*
  • Male
  • Middle Aged
  • Neoplastic Stem Cells / chemistry
  • Neoplastic Stem Cells / pathology*
  • Peptides / analysis
  • Phenotype
  • Skin Neoplasms / chemistry
  • Skin Neoplasms / etiology*
  • Skin Neoplasms / genetics
  • Skin Neoplasms / pathology
  • Snail Family Transcription Factors
  • Transcription Factors / analysis
  • Transcription Factors / genetics
  • Vimentin / analysis

Substances

  • AC133 Antigen
  • Antigens, CD
  • Biomarkers, Tumor
  • CDH1 protein, human
  • Cadherins
  • Glycoproteins
  • PROM1 protein, human
  • Peptides
  • SNAI1 protein, human
  • Snail Family Transcription Factors
  • Transcription Factors
  • Vimentin