Regularly timed events amid chaos

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052904. doi: 10.1103/PhysRevE.92.052904. Epub 2015 Nov 6.

Abstract

We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.