CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana

Appl Biochem Biotechnol. 2016 Aug;179(7):1248-61. doi: 10.1007/s12010-016-2062-3. Epub 2016 Apr 6.

Abstract

CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

Keywords: CO2 biofixation; Chlorella vulgaris; Green algae; Growth kinetics; Nannochloropsis gaditana.

MeSH terms

  • Biomass*
  • Carbon Dioxide / metabolism*
  • Chlorella vulgaris / growth & development*
  • Chlorella vulgaris / metabolism
  • Kinetics
  • Light
  • Photobioreactors
  • Temperature

Substances

  • Carbon Dioxide