Central antinociceptive activity of peripherally applied botulinum toxin type A in lab rat model of trigeminal neuralgia

Springerplus. 2016 Apr 11:5:431. doi: 10.1186/s40064-016-2071-2. eCollection 2016.

Abstract

Background: BoNT-A is often used in the clinical treatment for movement disorders. In recent years, various clinical studies suggest that BoNT-A can effectively alleviate pain caused by trigeminal neuralgia (TN); however, its mechanism remains unclear.

Methods: In this study, we used a lab rat model for TN produced by chronic constriction injury of the infraorbital nerve (ION-CCI). Restrained rats were injected subcutaneously with BoNT-A into the whisker pad tissue (ipsilaterally to the nerve injury) 14 days after the ION-CCI. Allodynia was tested by Von Frey filaments and TRPs and cSNAP-25 were tested by western blot.

Results: Peripheral application of BoNT-A (3, 10 U/kg) significantly increased the pain threshold of ION-CCI rats. Rota-rod test showed that BoNT-A administration at doses tested did not significantly affect rat motor coordination. By probing for a specific marker for BoNT-A, cleaved synaptosomal-associated protein 25 (cSNAP-25), we found that peripheral application of BoNT-A (10 U/kg) affected brainstem Vc, which could be blocked by the axonal transport blocker colchicine. In addition, western blot analysis showed that in the Vc region of ION-CCI rats, the expression levels of TRPA1, TRPV1, TRPV2 and TRPM8 increased, whereas peripheral application of BoNT-A significantly lowered the high expression of TRPA1, TRPV1 and TRPV2, but not TRPM8 at 7 days after BoNT-A injection.

Conclusions: The finding of this study suggest that peripherally applied BoNT-A can produce antinociceptive effects in ION-CCI model. The underlying mechanisms may be BoNT-A acts on the Vc via axonal transport, inhibits the high expression of TRPA1, TRPV1 and TRPV2, and reduces central sensitization.

Keywords: Botulinum toxin type A; Central antinociceptive activity; Rat; Trigeminal neuralgia.