Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill

Waste Manag. 2017 May:63:74-95. doi: 10.1016/j.wasman.2016.07.032. Epub 2016 Aug 11.

Abstract

In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point for comparing leachate data from other MSW landfills.

Keywords: Field verification; Geochemical modelling; Leaching; Municipal solid waste; Release prediction.

MeSH terms

  • Environmental Monitoring
  • Refuse Disposal / methods*
  • Soil Pollutants
  • Solid Waste
  • Waste Disposal Facilities*
  • Water Pollutants, Chemical / analysis

Substances

  • Soil Pollutants
  • Solid Waste
  • Water Pollutants, Chemical