Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways

Mol Microbiol. 2016 Dec;102(5):792-809. doi: 10.1111/mmi.13491. Epub 2016 Sep 26.

Abstract

The filamentous fungus Sordaria macrospora is a model system to study multicellular development during fruiting body formation. Previously, we demonstrated that this major process in the sexual life cycle is controlled by the Zn(II)2 Cys6 zinc cluster transcription factor PRO1. Here, we further investigated the genome-wide regulatory network controlled by PRO1 by employing chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) to identify binding sites for PRO1. We identified several target regions that occur in the promoter regions of genes encoding components of diverse signaling pathways. Furthermore, we identified a conserved DNA-binding motif that is bound specifically by PRO1 in vitro. In addition, PRO1 controls in vivo the expression of a DsRed reporter gene under the control of the esdC target gene promoter. Our ChIP-seq data suggest that PRO1 also controls target genes previously shown to be involved in regulating the pathways controlling cell wall integrity, NADPH oxidase and pheromone signaling. Our data point to PRO1 acting as a master regulator of genes for signaling components that comprise a developmental cascade controlling fruiting body formation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • DNA-Binding Proteins
  • Fruiting Bodies, Fungal / genetics
  • Fruiting Bodies, Fungal / metabolism
  • Fungal Proteins / genetics*
  • Fungal Proteins / metabolism
  • Fungi / genetics*
  • Fungi / metabolism
  • Genes, Reporter
  • Protein Binding
  • Signal Transduction
  • Sordariales / genetics*
  • Sordariales / metabolism
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism
  • Zinc Fingers

Substances

  • DNA-Binding Proteins
  • Fungal Proteins
  • Transcription Factors