MicroRNA-98 acts as a tumor suppressor in hepatocellular carcinoma via targeting SALL4

Oncotarget. 2016 Nov 8;7(45):74059-74073. doi: 10.18632/oncotarget.12190.

Abstract

MicroRNAs (miRs) are involved in the development and progression of hepatocellular carcinoma (HCC), but the regulatory mechanism of miR-98 in HCC still remains unclear. Here we found that miR-98 was significantly downregulated in HCC tissues compared to matched adjacent normal tissues (ANTs). Low miR-98 expression was associated with tumor size, metastasis, portal vein tumor embolus, and poor overall survival. Ectopic expression of miR-98 decreased the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of HCC cells. SALL4 was identified as a novel target of miR-98, and the protein expression of SALL4 was inhibited by miR-98 in HCC cells. Overexpression of SALL4 reversed the suppressive effects of miR-98 on the malignant phenotypes of HCC cells. Besides, SALL4, upregulated in HCC tissues compared to the matched ANTs, was inversely correlated to the miR-98 levels in HCC tissues. In addition, overexpression of miR-98 markedly suppressed the tumor growth as well as tumor-induced death in nude mice. In summary, miR-98 plays a suppressive role in the proliferation, migration, invasion and EMT of HCC cells, partly at least, via directly inhibition of SALL4. Therefore, the miR-98/SALL4 axis may become a promising therapeutic target for HCC.

Keywords: SALL4; hepatocellular carcinoma; microRNA-98; tumor suppressor.

MeSH terms

  • Animals
  • Carcinoma, Hepatocellular / genetics*
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Down-Regulation
  • Epithelial-Mesenchymal Transition
  • Genes, Tumor Suppressor
  • Hep G2 Cells
  • Heterografts
  • Humans
  • Liver Neoplasms / genetics*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / biosynthesis
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism*
  • Middle Aged
  • Prognosis
  • Transcription Factors / biosynthesis*
  • Transcription Factors / genetics*
  • Transfection

Substances

  • MIRN98 microRNA, human
  • MicroRNAs
  • SALL4 protein, human
  • Transcription Factors