Fast Pairwise Conversion of Supernova Neutrinos: A Dispersion Relation Approach

Phys Rev Lett. 2017 Jan 13;118(2):021101. doi: 10.1103/PhysRevLett.118.021101. Epub 2017 Jan 10.

Abstract

Collective pair conversion ν_{e}ν[over ¯]_{e}↔ν_{x}ν[over ¯]_{x} by forward scattering, where x=μ or τ, may be generic for supernova neutrino transport. Depending on the local angular intensity of the electron lepton number carried by neutrinos, the conversion rate can be "fast," i.e., of the order of sqrt[2]G_{F}(n_{ν_{e}}-n_{ν[over ¯]_{e}})≫Δm_{atm}^{2}/2E. We present a novel approach to understand these phenomena: a dispersion relation for the frequency and wave number (Ω,K) of disturbances in the mean field of ν_{e}ν_{x} flavor coherence. Runaway solutions occur in "dispersion gaps," i.e., in "forbidden" intervals of Ω and/or K where propagating plane waves do not exist. We stress that the actual solutions also depend on the initial and/or boundary conditions, which need to be further investigated.