Modeling of intensified high dynamic star tracker

Opt Express. 2017 Jan 23;25(2):927-948. doi: 10.1364/OE.25.000927.

Abstract

An intensified high dynamic star tracker (IHDST) is a photoelectric instrument and stably outputs three-axis attitude for a spacecraft at very high angular velocity. The IHDST uses an image intensifier to multiply the incident starlight. Thus, high sensitivity of the star detection is achieved under short exposure time such that extremely high dynamic performance is achieved. The IHDST differs from a traditional star tracker in terms of the imaging process. Therefore, we establish a quantum transfer model of IHDST based on stochastic process theory. By this model, the probability distribution of the output quantum number is obtained accurately. Then, we introduce two-dimensional Lorentz functions to describe the spatial spreading process of the IHDST. Considering the interaction of these two processes, a complete star imaging model of IHDST is provided. Using this model, the centroiding accuracy of the IHDST is analyzed in detail. Accordingly, a working parameter optimizing strategy is developed for high centroiding accuracy and improved dynamic performance. Finally, the laboratory tests and the night sky experiment support the conclusions.