Synergism and mechanism of Astragaloside IV combined with Ginsenoside Rg1 against autophagic injury of PC12 cells induced by oxygen glucose deprivation/reoxygenation

Biomed Pharmacother. 2017 May:89:124-134. doi: 10.1016/j.biopha.2017.02.015. Epub 2017 Feb 20.

Abstract

The aim of this study was to explore the effect by which the combination of Astragaloside IV (AST IV) and Ginsenoside Rg1 (Rg1) resisted autophagic injury in PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). We studied the nature of the interaction between AST IV and Rg1 that inhibited autophagy through the Isobologram method, and investigated the synergistic mechanism via the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways. Our results showed that, based on the 50% inhibiting concentration (IC50), AST IV combined with Rg1 at a 1:1 ratio resulted in a synergistic effect, whereas the combination of the two had an antagonistic effect on autophagy at ratios of 1:2 and 2:1. Meanwhile, AST IV and Rg1 alone increased cell survival and decreased lactate dehydrogenase (LDH) leakage induced by OGD/R, reduced autophagosomes and the LC3 II positive patch, down-regulated the LC3 II/LC3 I ratio and up-regulated the p62 protein; the 1:1 combination enhanced these effects. Mechanistic study showed that Rg1 and the 1:1 combination increased the phosphorylation of PI3K I, Akt and mTOR; the effects of the combination were greater than those of the drugs alone. AST IV and the 1:1 combination suppressed the expression of PI3K III and Becline-1, and the combination elevated Bcl-2 protein expression; the effects of the combination were better than those of the drugs alone. These results suggest that after 2 h-OGD followed by reoxygenation for 24h, PC12 cells suffer excessive autophagy and damage, which are blocked by AST IV or Rg1; moreover, the combination of AST IV and Rg1 at a 1:1 ratio of their IC50 concentrations has a synergistic inhibition on autophagic injury. The synergistic mechanism may be associated with the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways.

Keywords: Astragaloside IV; Autophagic injury; Ginsenoside Rg1; PC12 cells OGD/R; PI3K I/Akt/mTOR; PI3K III/Beclin-1/Bcl-2; Synergism.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Autophagy / drug effects*
  • Cell Hypoxia / drug effects
  • Cell Survival / drug effects
  • Drug Synergism
  • Ginsenosides / pharmacology*
  • Glucose / deficiency*
  • L-Lactate Dehydrogenase / metabolism
  • Neuroprotective Agents / pharmacology
  • PC12 Cells
  • Phagosomes / drug effects
  • Rats
  • Saponins / pharmacology*
  • Signal Transduction / drug effects
  • Triterpenes / pharmacology*

Substances

  • Ginsenosides
  • Neuroprotective Agents
  • Saponins
  • Triterpenes
  • astragaloside A
  • L-Lactate Dehydrogenase
  • Glucose
  • ginsenoside Rg1