WO3/g-C3N4 composites: one-pot preparation and enhanced photocatalytic H2 production under visible-light irradiation

Nanotechnology. 2017 Apr 21;28(16):164002. doi: 10.1088/1361-6528/aa651a. Epub 2017 Mar 7.

Abstract

A series of WO3/g-C3N4 composites with different WO3 contents were prepared via a facile one-pot pyrolysis method, and showed notably enhanced visible-light-driven photocatalytic H2-evolution activities, with the highest rate of 400 μmol h-1 gcat-1 that was 15.0 times of that for pristine g-C3N4. Contents and sizes of WO3 crystallites in the composites were easily adjusted by changing the molar ratios of (NH4)2WS4 to C3H6N6 in the feed reagents, thereby successfully optimizing the Z-scheme system constructed by WO3 and g-C3N4 and thus effectively reducing the recombination of photogenerated charge carriers in g-C3N4. Moreover, pore volumes and surface areas of the composites were gradually enlarged by introducing WO3 into g-C3N4 via the one-pot preparation strategy, therefore promoting the redox reactions to evolve H2. This work presented an effective route to simultaneously optimize the phase compositions and textural structures of photocatalysts for enhanced H2 evolution.