Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie

Toxins (Basel). 2017 Jun 7;9(6):186. doi: 10.3390/toxins9060186.

Abstract

A strain of the Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has evolved >800-fold resistance to Cry1Ie (ACB-IeR) after 49 generations of selection. The inheritance pattern of resistance to Cry1Ie in ACB-IeR strain and its cross-resistance to other Bt toxins were determined through bioassay by exposing neonates from genetic-crosses to toxins incorporated into the diet. The response of progenies from reciprocal F₁ crosses were similar (LC50s: 76.07 vs. 74.32 μg/g), which suggested the resistance was autosomal. The effective dominance (h) decreased as concentration of Cry1Ie increased. h was nearly recessive or incompletely recessive on Cry1Ie maize leaf tissue (h = 0.02), but nearly dominant or incompletely dominant (h = 0.98) on Cry1Ie maize silk. Bioassay of the backcross suggested that the resistance was controlled by more than one locus. In addition, the resistant strain did not perform cross-resistance to Cry1Ab (0.8-fold), Cry1Ac (0.8-fold), Cry1F (0.9-fold), and Cry1Ah (1.0-fold). The present study not only offers the manifestation for resistance management, but also recommends that Cry1Ie will be an appropriate candidate for expression with Cry1Ab, Cry1Ac, Cry1F, or Cry1Ah for the development of Bt maize.

Keywords: Bacillus thuringiensis; Ostrinia furnacalis; cross-resistance; inheritance; resistance management.

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins / genetics*
  • Endotoxins / genetics*
  • Female
  • Hemolysin Proteins / genetics*
  • Insecticide Resistance*
  • Male
  • Moths*
  • Plants, Genetically Modified / genetics
  • Zea mays / genetics*

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • insecticidal crystal protein, Bacillus Thuringiensis