Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics

ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22077-22082. doi: 10.1021/acsami.7b05713. Epub 2017 Jun 26.

Abstract

The unique capability of topological rearrangement for dynamic covalent polymer networks has enabled various unusual properties (self-healing, solid-state plasticity, and reprocessability) that are not found in conventional thermosets. Achieving these properties in one network in a synergetic fashion can open up new opportunities for shape memory polymer. To accomplish such a goal, the freedom to tune topological rearrangement kinetics is critical. This is, however, challenging to achieve. In this work, two sets of dynamic bonds (urethane and hindered urea) are incorporated into a hybrid network for synthesizing shape memory poly(urea-urethane). By changing the bond ratio, networks with highly tunable topological rearrangement kinetics are obtained. Combining self-healing, solid-state plasticity, and reprocessability in one such shape memory network leads to unusual versatility in its shape-shifting performance.

Keywords: dynamic covalent bond; plasticity; reprocessing; self-healing; shape memory polymer; thermoset.