Global emergence of the widespread Pseudomonas aeruginosa ST235 clone

Clin Microbiol Infect. 2018 Mar;24(3):258-266. doi: 10.1016/j.cmi.2017.06.018. Epub 2017 Jun 23.

Abstract

Objectives: Despite the non-clonal epidemic population structure of Pseudomonas aeruginosa, several multi-locus sequence types are distributed worldwide and are frequently associated with epidemics where multidrug resistance confounds treatment. ST235 is the most prevalent of these widespread clones. In this study we aimed to understand the origin of ST235 and the molecular basis for its success.

Methods: The genomes of 79 P. aeruginosa ST235 isolates collected worldwide over a 27-year period were examined. A phylogenetic network was built, using a Bayesian approach to find the Most Recent Common Ancestor, and we identified antibiotic resistance determinants and ST235-specific genes.

Results: Our data suggested that the ST235 sublineage emerged in Europe around 1984, coinciding with the introduction of fluoroquinolones as an antipseudomonal treatment. The ST235 sublineage seemingly spread from Europe via two independent clones. ST235 isolates then appeared to acquire resistance determinants to aminoglycosides, β-lactams and carbapenems locally. Additionally, we found that all the ST235 genomes contained the exoU-encoded exotoxin and identified 22 ST235-specific genes clustering in blocks and implicated in transmembrane efflux, DNA processing and bacterial transformation. These unique combinations of genes may have contributed to the poor outcome associated with P. aeruginosa ST235 infections and increased the ability of this international clone to acquire mobile resistance elements.

Conclusion: Our data suggest that P. aeruginosa ST235 (a) has become prevalent across the globe potentially due to the selective pressure of fluoroquinolones and (b) readily became resistant to aminoglycosides, β-lactams and carbapenems through mutation and acquisition of resistance elements among local populations.

Keywords: Bacterial resistance; Epidemic; Fluoroquinolones; High-risk clones; International clones; Pathogen; Phylogeny.

MeSH terms

  • Cluster Analysis
  • Drug Resistance, Bacterial
  • Evolution, Molecular
  • Genes, Bacterial
  • Genotype*
  • Global Health
  • Molecular Epidemiology
  • Multilocus Sequence Typing
  • Phylogeny
  • Prevalence
  • Pseudomonas Infections / epidemiology
  • Pseudomonas Infections / microbiology*
  • Pseudomonas aeruginosa / classification*
  • Pseudomonas aeruginosa / genetics*
  • Pseudomonas aeruginosa / isolation & purification