Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture

ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25216-25224. doi: 10.1021/acsami.7b04192. Epub 2017 Jul 19.

Abstract

Thorium separation has recently become a hot topic because of the potential application of thorium as a future nuclear fuel, while metal-organic framework (MOF) materials have received much attention in the separation field due to their unique properties. Herein, a highly porous and stable MOF, UiO-66, and its carboxyl derivatives (UiO-66-COOH and UiO-66-(COOH)2) were synthesized and explored for the first time for Th(IV) capture from a weak acidic solution. Although the introduction of carboxyl groups into UiO-66 leads to an obvious decrease in the surface area and pore volume, the adsorbability toward Th(IV) is greatly enhanced. At pH = 3.0, the saturated sorption capacity for Th(IV) into UiO-66-(COOH)2 reached 350 mg/g, representing one of the largest values for Th(IV) capture by solid extraction. Moreover, the functionalized MOFs show fast sorption kinetics and desirable selectivity toward Th(IV) over a range of competing metal ions. A possible mechanism for the selective recognition of Th(IV) by these MOFs was explored on the basis of extended X-ray absorption fine structure and Fourier transform infrared analysis. It is concluded that UiO-66-COOH and UiO-66-(COOH)2 sorb Th(IV) through the coordination of carboxyl anions in the pores of the MOFs, whereas in the case of UiO-66, both the precipitation and the exchange with the organic solvent contribute to the Th(IV) uptake. This study contributes to the assessment of the feasibility of MOFs applied in actinides separation and better understanding of actinides sorption behavior in this kind of hybrid porous solid materials.

Keywords: EXAFS; Th(IV); carboxyl groups; metal-organic frameworks; sorption.