Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity

Nanotechnology. 2017 Sep 29;28(39):39LT01. doi: 10.1088/1361-6528/aa8158. Epub 2017 Jul 21.

Abstract

Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml-1) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 104 S m-1 and a superior thermal conductivity of 1842 W m-1 K-1. Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.