Living scaffolds for neuroregeneration

Curr Opin Solid State Mater Sci. 2014 Dec;18(6):308-318. doi: 10.1016/j.cossms.2014.07.004. Epub 2014 Sep 19.

Abstract

Neural tissue engineers are exploiting key mechanisms responsible for neural cell migration and axonal path finding during embryonic development to create living scaffolds for neuroregeneration following injury and disease. These mechanisms involve the combined use of haptotactic, chemotactic, and mechanical cues to direct cell movement and re-growth. Living scaffolds provide these cues through the use of cells engineered in a predefined architecture, generally in combination with biomaterial strategies. Although several hurdles exist in the implementation of living regenerative scaffolds, there are considerable therapeutic advantages to using living cells in conjunction with biomaterials. The leading contemporary living scaffolds for neurorepair are utilizing aligned glial cells and neuronal/axonal tracts to direct regenerating axons across damaged tissue to appropriate targets, and in some cases to directly replace the function of lost cells. Future advances in technology, including the use of exogenous stimulation and genetically engineered stem cells, will further the potential of living scaffolds and drive a new era of personalized medicine for neuroregeneration.

Keywords: Axon pathfinding; Biomaterials; Cell migration; Cell transplant; Neurodegeneration; Neurotrauma; Regeneration; Tissue engineering.