Screening Platform for Cell Contact Guidance Based on Inorganic Biomaterial Micro/nanotopographical Gradients

ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31433-31445. doi: 10.1021/acsami.7b08237. Epub 2017 Sep 1.

Abstract

High-throughput screening (HTS) methods based on topography gradients or arrays have been extensively used to investigate cell-material interactions. However, it is a huge technological challenge to cost efficiently prepare topographical gradients of inorganic biomaterials due to their inherent material properties. Here, we developed a novel strategy translating PDMS-based wrinkled topography gradients with amplitudes from 49 to 2561 nm and wavelengths between 464 and 7121 nm to inorganic biomaterials (SiO2, Ti/TiO2, Cr/CrO3, and Al2O3) which are frequently used clinical materials. Optimal substratum conditions promoted human bone-marrow derived mesenchymal stem cell alignment, elongation, cytoskeleton arrangement, filopodia development as well as cell adhesion in vitro, which depended both on topography and interface material. This study displays a positive correlation between cell alignment and the orientation of cytoskeleton, filopodia, and focal adhesions. This platform vastly minimizes the experimental efforts both for inorganic material interface engineering and cell biological assessments in a facile and effective approach. The practical application of the HTS technology is expected to aid in the acceleration of developments of inorganic clinical biomaterials.

Keywords: biomimetic surface; high-throughput screening; inorganic biomaterials; stem cell behavior; topographical gradient.

MeSH terms

  • Biocompatible Materials / chemistry*
  • Cell Adhesion
  • Focal Adhesions
  • Humans
  • Mesenchymal Stem Cells
  • Nanostructures
  • Silicon Dioxide
  • Surface Properties

Substances

  • Biocompatible Materials
  • Silicon Dioxide