Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation

Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E10018-E10027. doi: 10.1073/pnas.1708433114. Epub 2017 Oct 30.

Abstract

Eukaryotic transcriptomes contain a major non-protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.

Keywords: Arabidopsis thaliana; long noncoding RNA; phosphate deficiency; ribosome footprint profiling; small peptides.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis / metabolism*
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant / genetics*
  • Mutation
  • Open Reading Frames / genetics
  • Phosphates / metabolism
  • Plant Roots / genetics
  • Plant Roots / metabolism
  • Protein Biosynthesis
  • RNA, Long Noncoding / genetics
  • RNA, Messenger / metabolism
  • RNA, Untranslated / genetics*
  • RNA, Untranslated / metabolism*
  • Ribosomes / genetics*
  • Ribosomes / metabolism*
  • Seedlings
  • Starvation
  • Transcriptome

Substances

  • Phosphates
  • RNA, Long Noncoding
  • RNA, Messenger
  • RNA, Untranslated