Effects of evolving quality of landfill leachate on microbial fuel cell performance

Waste Manag Res. 2018 Jan;36(1):59-67. doi: 10.1177/0734242X17739969. Epub 2017 Nov 10.

Abstract

Microbial fuel cell (MFC) is a novel technology for landfill leachate treatment with simultaneous electric power generation. In recent years, more and more modern landfills are operating as bioreactors to shorten the time required for landfill stabilization and improve the leachate quality. For landfills to operate as biofilters, leachate is recirculated back to the landfill, during which time the organics of the leachate can be decomposed. Continuous recirculation typically results in evolving leachate quality, which chronologically corresponds to evolution stages such as hydrolysis, acidogenesis, acetogenesis, methanogenesis, and maturation. In this research, variable power generation (160 to 230 mW m-2) by MFC was observed when leachate of various evolutionary stages was used as the feed. The power density followed a Monod-type kinetic model with the chemical oxygen demand (COD) equivalent of the volatile fatty acids (VFAs) ( p < 0.001). The coulombic efficiency decreased from 20% to 14% as the leachate evolved towards maturation. The maximum power density linearly decreased with the increase of internal resistance, resulting from the change of the conductivity of the solution. The decreased conductivity boosted the internal resistance and consequently limited the power generation. COD removal as high as 90% could be achieved with leachate extracted from appropriate evolutionary stages, with a maximum energy yield of 0.9 kWh m-3 of leachate. This study demonstrated the importance of the evolving leachate quality in different evolutionary stages for the performance of leachate-fed MFCs. The leachate extracted from acidogenesis and acetogenesis were optimal for both COD reduction and energy production in MFCs.

Keywords: COD reduction; MFC; coulombic efficiency; landfill leachate; power density; recirculation.

MeSH terms

  • Bioelectric Energy Sources*
  • Biological Oxygen Demand Analysis
  • Bioreactors
  • Electricity
  • Waste Disposal Facilities*
  • Water Pollutants, Chemical*

Substances

  • Water Pollutants, Chemical