A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles

Anal Chem. 2017 Dec 19;89(24):13575-13581. doi: 10.1021/acs.analchem.7b04014. Epub 2017 Dec 5.

Abstract

We have designed a pumpless acoustofluidic device for the concentration and separation of different sized particles inside a single-layered straight polydimethylsiloxane (PDMS) microfluidic channel. The proposed device comprises two parallel interdigitated transducers (IDTs) positioned underneath the PDMS microchannel. The IDTs produce high-frequency surface acoustic waves that generate semipermeable virtual acoustic radiation force field walls that selectively trap and concentrate larger particles at different locations inside the microchannel and allow the smaller particles to pass through the acoustic filter. The performance of the acoustofluidic device was first characterized by injecting into the microchannel a uniform flow of suspended 9.9 μm diameter particles with various initial concentrations (as low as 10 particles/mL) using a syringe pump. The particles were trapped with ∼100% efficiency by a single IDT actuated at 73 MHz. The acoustofluidic platform was used to demonstrate the pumpless separation of 12.0, 4.8, and 2.1 μm microparticles by trapping the 12 and 4.8 μm particles using the two IDTs actuated at 73 and 140 MHz, respectively. However, most of the 2.1 μm particles flowed over the IDTs unaffected. The acoustofluidic device was capable of rapidly processing a large volume of sample fluid pumped through the microchannel using an external syringe pump. A small volume of the sample fluid was processed through the device using a capillary flow and a hydrodynamic pressure difference that did not require an external pumping device.

Publication types

  • Research Support, Non-U.S. Gov't