Characterization of the potentiation effect of activin on human erythroid colony formation in vitro

Blood. 1989 Mar;73(4):952-60.

Abstract

Activin, also named FSH-releasing protein, was previously shown to induce hemoglobin accumulation in K562 cells and potentiate the proliferation and differentiation of CFU-E in human bone marrow cultures. Present studies indicate that the potentiation effect of activin is lineage specific. In addition to CFU-E, activin caused an increase in the colony formation of BFU-E from either bone marrow or peripheral blood. It had little effect on the colony formation of CFU-GM and the mixed colonies from CFU-GEMM. In serum-depleted culture, the effect of activin was shown to be dose-dependent with doses effective at picomolar concentrations. The potentiation effect of activin was exerted indirectly through mediation of both monocytes and T lymphocytes. Activin was also found to increase specifically the proportion of DNA-synthesizing erythroid progenitors from both bone marrow and peripheral blood. It had little effect on DNA synthesis in CFU-GM and in mitogen-stimulated lymphocytes. Addition of the monocytes or T lymphocytes to their respective depleted subpopulations of mononuclear cells reconstituted the enhancing effect of activin on the colony formation and DNA synthesis of erythroid progenitors. These results strongly suggest a specific role of activin in potentiating the proliferation and differentiation of erythroid progenitors in vitro.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation / drug effects
  • Cell Division / drug effects
  • DNA / biosynthesis
  • Erythrocytes / drug effects*
  • Hematopoietic Stem Cells / drug effects*
  • In Vitro Techniques
  • Inhibins / pharmacology*
  • Swine

Substances

  • Inhibins
  • DNA