Genetic diversity of human respiratory syncytial virus circulating among children in Ibadan, Nigeria

PLoS One. 2018 Jan 23;13(1):e0191494. doi: 10.1371/journal.pone.0191494. eCollection 2018.

Abstract

Human respiratory syncytial virus (HRSV) is the most common viral cause of acute lower respiratory tract infections (LRTIs) in infants and young children however, without an effective vaccine licensed for human use till date. Information on the circulating genotypes of HRSV from regions with high-burden of infection is vital in the global efforts towards the development of protective vaccine. We report here the genotypes of HRSV circulating among children in Ibadan, the first of such from Nigeria.Nasopharyngeal and oropharyngeal swabs collected from 231 children presenting with respiratory infections in some health facilities for care as well as those attending immunization centers for routine vaccination in Ibadan, Nigeria were used for the study. The 2nd hypervariable (HVR2) region of the glycoprotein (G) gene of HRSV was amplified and sequenced using HRSV group specific primers. HRSV was detected in 41 out of the 231 samples. Thirty-three of the isolates were successfully subtyped(22 subtype A and 11 subtype B). Fourteen of the subtype A and all the subtype B were successfully sequenced and genotyped. Phylogenetic analysis showed that genotype ON1 with 72 nucleotide (nt) duplication was the major subgroup A virus (11 of 14) detected together with genotype NA2. All the HRSV subtype B detected belong to the BA genotype with characteristic 60nt duplication. The ON1 genotypes vary considerably from the prototype strain due to amino acid substitutions including T292I which has not been reported elsewhere. The NA2 genotypes have mutations on four antigenic sites within the HVR2relative to the prototype A2. In conclusion, three genotypes of HRSV were found circulating in Ibadan, Nigeria. Additional study that will include isolates from other parts of the country will be done to determine the extent of genotype diversity of HRSV circulating in Nigeria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Child, Preschool
  • Genes, Viral
  • Genetic Variation*
  • Genotype
  • Humans
  • Nigeria
  • Phylogeny
  • Polymerase Chain Reaction
  • Respiratory Syncytial Virus, Human / classification
  • Respiratory Syncytial Virus, Human / genetics*