Electrothermally Tunable Graphene Resonators Operating at Very High Temperature up to 1200 K

Nano Lett. 2018 Mar 14;18(3):1678-1685. doi: 10.1021/acs.nanolett.7b04685. Epub 2018 Feb 23.

Abstract

The unique negative thermal expansion coefficient and remarkable thermal stability of graphene make it an ideal candidate for nanoelectromechanical systems (NEMS) with electrothermal tuning. We report on the first experimental demonstration of electrothermally tuned single- and few-layer graphene NEMS resonators operating in the high frequency (HF) and very high frequency (VHF) bands. In single-, bi-, and trilayer (1L, 2L, and 3L) graphene resonators with carefully controlled Joule heating, we have demonstrated remarkably broad frequency tuning up to Δ f/ f0 ≈ 310%. Simultaneously, device temperature variations imposed by Joule heating are monitored using Raman spectroscopy; we find that the device temperature increases from 300 K up to 1200 K, which is the highest operating temperature known to date for electromechanical resonators. Using the measured frequency and temperature variations, we further extract both thermal expansion coefficients and thermal conductivities of these devices. Comparison with graphene electrostatic gate tuning indicates that electrothermal tuning is more efficient. The results clearly suggest that the unique negative thermal expansion coefficient of graphene and its excellent tolerance to very high temperature can be exploited for engineering highly tunable and robust graphene transducers for harsh and extreme environments.

Keywords: Graphene; electrothermal; frequency tuning; nanoelectromechanical systems (NEMS); thermal conductivity; thermal expansion coefficient (TEC).

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.