Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts

Chem Rev. 2018 Mar 14;118(5):2340-2391. doi: 10.1021/acs.chemrev.7b00542. Epub 2018 Feb 6.

Abstract

The oxygen reduction reaction (ORR) is a key component of biological processes and energy technologies. This Review provides a comprehensive report of soluble molecular catalysts and electrocatalysts for the ORR. The precise synthetic control and relative ease of mechanistic study for homogeneous molecular catalysts, as compared to heterogeneous materials or surface-adsorbed species, enables a detailed understanding of the individual steps of ORR catalysis. Thus, the Review places particular emphasis on ORR mechanism and thermodynamics. First, the thermochemistry of oxygen reduction and the factors influencing ORR efficiency are described to contextualize the discussion of catalytic studies that follows. Reports of ORR catalysis are presented in terms of their mechanism, with separate sections for catalysis proceeding via initial outer- and inner-sphere electron transfer to O2. The rates and selectivities (for production of H2O2 vs H2O) of these catalysts are provided, along with suggested methods for accurately comparing catalysts of different metals and ligand scaffolds that were examined under different experimental conditions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.