Enteric glia: Diversity or plasticity?

Brain Res. 2018 Aug 15;1693(Pt B):140-145. doi: 10.1016/j.brainres.2018.02.001. Epub 2018 Feb 7.

Abstract

Glial cells of the enteric nervous system correspond to a unique glial lineage distinct from other central and peripheral glia, and form a vast and abundant network spreading throughout all the layers of the gastrointestinal wall. Research over the last two decades has demonstrated that enteric glia regulates all major gastrointestinal functions via multiple bi-directional crosstalk with enteric neurons and other neighboring cell types. Recent studies propose that enteric glia represents a heterogeneous population associated with distinct localization within the gut wall, phenotype and activity. Compelling evidence also indicates that enteric glial cells are capable of plasticity leading to phenotypic changes whose pinnacle so far has been shown to be the generation of enteric neurons. While alterations of the glial network have been heavily incriminated in the development of gastrointestinal pathologies, enteric glial cells have also recently emerged as an active player in gut-brain signaling. Therefore, the development of tools and techniques to better appraise enteric glia heterogeneity and plasticity will undoubtedly unveil critical regulatory mechanisms implicated in gut health and disease, as well as disorders of the gut-brain axis.

Keywords: Enteric glial cells; Enteric nervous system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Enteric Nervous System / cytology*
  • Humans
  • Nerve Net / cytology
  • Neuroglia / classification
  • Neuroglia / physiology*