The pathology of vitamin D deficiency in domesticated animals: An evolutionary and comparative overview

Int J Paleopathol. 2018 Dec:23:100-109. doi: 10.1016/j.ijpp.2018.03.001. Epub 2018 Mar 13.

Abstract

Although vitamin D is critical to calcium/phosphorus homeostasis, bone formation and remodeling, there is evolution-based variation between species in vitamin D metabolism and susceptibility to rickets and osteomalacia. Most herbivores produce vitamin D3 in response to sunlight, but dogs and cats have generally lost the ability as carnivore diets are rich in vitamin D. Nutritional deficiencies and/or poor exposure to sunlight can induce rickets in birds, swine, cattle and sheep, but horses are less susceptible as they have evolved a calcium homeostasis that is quite different than other animals. Adaptations to specific environments also affect disease incidence: llamas/alpacas out of their natural high altitude intense solar radiation environments are highly susceptible to vitamin D deficiency. The pathology of rickets/osteomalacia is similar across species, however fibrous osteodystrophy is more common and may also be present. Rickets/osteomalacia were likely more common in animals before the advent of commercial diets, but can be difficult to definitively diagnose especially in single archeological specimens. Consideration of species susceptibility, location - especially in terms of latitude, and any available information on diet, season of occurrence, husbandry practices or descriptions of affected animals can support the diagnosis of metabolic bone disease in animals.

Keywords: Comparative pathology; Evolution; Hypovitaminosis D; Metabolic bone disease; Osteomalacia; Rickets.

Publication types

  • Historical Article
  • Review

MeSH terms

  • Animals
  • Animals, Domestic*
  • History, 15th Century
  • History, 16th Century
  • History, 17th Century
  • History, 18th Century
  • History, 19th Century
  • History, 20th Century
  • History, 21st Century
  • History, Ancient
  • History, Medieval
  • Vitamin D Deficiency / history
  • Vitamin D Deficiency / veterinary*