Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats

J Agric Food Chem. 2018 Apr 25;66(16):4118-4128. doi: 10.1021/acs.jafc.8b00529. Epub 2018 Apr 16.

Abstract

This study investigated the effects of dietary supplementation of fish oil on the signals of lipid metabolism involved in hepatic cholesterol and triglyceride influx and excretion in high-fat diet (HFD)-fed rats. Fish oil (FO) repressed body (HFD, 533 ± 18.2 g; HFD+FO, 488 ± 28.0 g, p < 0.05) and liver weights (HFD, 5.7 ± 0.6 g/100 g of body weight; HFD+FO, 4.8 ± 0.4 g/100 g of body weight, p < 0.05) in HFD-fed rats. Fish oil could also improve HFD-induced imbalance of lipid metabolism in blood, liver, and adipose tissues including the significant decreases in plasma and liver total cholesterol (TC) (plasma-HFD, 113 ± 33.6 mg/dL; HFD+FO, 50.0 ± 5.95 mg/dL, p < 0.05; liver-HFD, 102 ± 13.0 mg/g liver; [corrected] HFD+FO, 86.6 ± 7.81 mg/g liver, [corrected] p < 0.05), blood, liver, and adipose triglyceride (TG) (blood-HFD, 52.5 ± 20.4 mg/dL; HFD+FO, 29.8 ± 4.30 mg/dL, p < 0.05; liver-HFD, 56.2 ± 10.0 mg/g liver; [corrected] HFD+FO, 30.3 ± 5.28 mg/g liver, [corrected] p < 0.05; adipose-HFD, 614 ± 73.2 mg/g liver, [corrected] HFD+FO, 409 ± 334 mg/g of adipose tissue, [corrected] p < 0.05), and low density (HFD, 79.8 ± 40.9 mg/dL; HFD+FO, 16.6 ± 5.47 mg/dL, p < 0.05) and very-low-density (HFD, 49.7 ± 33.3 mg/dL; HFD+FO, 10.4 ± 3.45 mg/dL, p < 0.05) lipoprotein and the significant increases in fecal TC (HFD, 12.2 ± 0.67 mg/g feces; [corrected] HFD+FO, 16.3 ± 2.04 mg/g feces, [corrected] < 0.05) and TG (HFD, 2.09 ± 0.10 mg/g feces; [corrected] HFD+FO, 2.38 ± 0.22 mg/g feces, [corrected] p < 0.05) and lipoprotein lipase activity of adipose tissues (HFD, 16.6 ± 3.64 μM p-nitrophenol; HFD+FO, 24.5 ± 4.19 μM p-nitrophenol, p < 0.05). Moreover, fish oil significantly activated the protein expressions of hepatic lipid metabolism regulators (AMPKα and PPARα) and significantly regulated the lipid-transport-related signaling molecules (ApoE, MTTP, ApoB, Angptl4, ApoCIII, ACOX1, and SREBPF1) in blood or liver of HFD-fed rats. These results suggest that fish oil supplementation improves HFD-induced imbalance of lipid homeostasis in blood, liver, and adipose tissues in rats.

Keywords: dietary supplementation; fish oil; high-fat diet; lipid metabolism; lipid transportation.

MeSH terms

  • AMP-Activated Protein Kinases / genetics
  • AMP-Activated Protein Kinases / metabolism
  • Adipose Tissue / drug effects*
  • Adipose Tissue / metabolism
  • Animals
  • Apolipoproteins B / genetics
  • Apolipoproteins B / metabolism
  • Blood Glucose / metabolism
  • Cholesterol / metabolism
  • Diet, High-Fat / adverse effects
  • Fish Oils / administration & dosage*
  • Homeostasis / drug effects
  • Humans
  • Lipid Metabolism / drug effects*
  • Liver / drug effects*
  • Liver / metabolism
  • Male
  • Obesity / drug therapy*
  • Obesity / genetics
  • Obesity / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Triglycerides / metabolism

Substances

  • Apolipoproteins B
  • Blood Glucose
  • Fish Oils
  • Triglycerides
  • Cholesterol
  • AMP-Activated Protein Kinases