Hyperoxia Disrupts Extracellular Signal-Regulated Kinases 1/2-Induced Angiogenesis in the Developing Lungs

Int J Mol Sci. 2018 May 20;19(5):1525. doi: 10.3390/ijms19051525.

Abstract

Hyperoxia contributes to the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of infants that is characterized by interrupted alveologenesis. Disrupted angiogenesis inhibits alveologenesis, but the mechanisms of disrupted angiogenesis in the developing lungs are poorly understood. In pre-clinical BPD models, hyperoxia increases the expression of extracellular signal-regulated kinases (ERK) 1/2; however, its effects on the lung endothelial ERK1/2 signaling are unclear. Further, whether ERK1/2 activation promotes lung angiogenesis in infants is unknown. Hence, we tested the following hypotheses: (1) hyperoxia exposure will increase lung endothelial ERK1/2 signaling in neonatal C57BL/6J (WT) mice and in fetal human pulmonary artery endothelial cells (HPAECs); (2) ERK1/2 inhibition will disrupt angiogenesis in vitro by repressing cell cycle progression. In mice, hyperoxia exposure transiently increased lung endothelial ERK1/2 activation at one week of life, before inhibiting it at two weeks of life. Interestingly, hyperoxia-mediated decrease in ERK1/2 activation in mice was associated with decreased angiogenesis and increased endothelial cell apoptosis. Hyperoxia also transiently activated ERK1/2 in HPAECs. ERK1/2 inhibition disrupted angiogenesis in vitro, and these effects were associated with altered levels of proteins that modulate cell cycle progression. Collectively, these findings support our hypotheses, emphasizing that the ERK1/2 pathway is a potential therapeutic target for BPD infants with decreased lung vascularization.

Keywords: HPAECs; angiogenesis; bronchopulmonary dysplasia; cell cycle; extracellular signal-regulated kinases 1/2; hyperoxia.

MeSH terms

  • Animals
  • Apoptosis
  • Cell Cycle
  • Cells, Cultured
  • Endothelial Cells / metabolism
  • Endothelial Cells / pathology
  • Endothelium, Vascular / metabolism
  • Endothelium, Vascular / pathology
  • Female
  • Humans
  • Hyperoxia / metabolism*
  • Hyperoxia / pathology
  • Lung / blood supply*
  • Lung / growth & development
  • MAP Kinase Signaling System*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Neovascularization, Physiologic*

Substances

  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3