Combined Therapy with Extracorporeal Shock Wave and Adipose-Derived Mesenchymal Stem Cells Remarkably Improved Acute Ischemia-Reperfusion Injury of Quadriceps Muscle

Oxid Med Cell Longev. 2018 Apr 2:2018:6012636. doi: 10.1155/2018/6012636. eCollection 2018.

Abstract

Extracorporeal shock wave (ECSW) and adipose-derived mesenchymal stem cells (ADMSCs) have been recognized to have capacities of anti-inflammation and angiogenesis. We tested the hypothesis that ECSW and ADMSC therapy could attenuate ischemia-reperfusion- (IR-) induced thigh injury (femoral artery tightened for 6 h then the tightness was relieved) in rats. Adult male SD rats (n = 30) were divided into group 1 (sham-control), group 2 (IR), group 3 (IR + ECSW/120 impulses at 0.12 mJ/mm2 given at 3 h/24 h/72 h after IR), group 4 (allogenic ADMSC/1.2 × 106 cell intramuscular and 1.2 × 106 cell intravenous injections 3 h after IR procedure), and group 5 (ECSW + ADMSC). At day 7 after the IR procedure, the left quadriceps muscle was harvested for studies. At 18 h after the IR procedure, serum myoglobin/creatine phosphokinase (CPK) levels were highest in group 2, lowest in group 1, and with intermediate values significantly progressively reduced in groups 3 to 5 (all p < 0.0001). By day 5 after IR, the mechanical paw-withdrawal threshold displayed an opposite pattern of CPK (all p < 0.0001). The protein expressions of inflammatory, oxidative-stress, apoptotic, fibrotic, DNA-damaged, and mitochondrial-damaged biomarkers and cellular expressions of inflammatory and DNA-damaged biomarkers exhibited an identical pattern of CPK among the five groups (all p < 0.0001). The microscopic findings of endothelial-cell biomarkers and number of arterioles expressed an opposite pattern of CPK, and the angiogenesis marker was significantly progressively increased from groups 1 to 5, whereas the histopathology showed that muscle-damaged/fibrosis/collagen-deposition areas exhibited an identical pattern of CPK among the five groups (all p < 0.0001). In conclusion, ECSW-ADMSC therapy is superior to either one applied individually for protecting against IR-induced thigh injury.

MeSH terms

  • Adiposity
  • Animals
  • Extracorporeal Shockwave Therapy / methods*
  • Humans
  • Mesenchymal Stem Cells / metabolism*
  • Quadriceps Muscle / metabolism*
  • Quadriceps Muscle / pathology
  • Rats
  • Rats, Sprague-Dawley
  • Reperfusion Injury / therapy*