Photochemistry in Confined Environments for Single-Chain Nanoparticle Design

J Am Chem Soc. 2018 Aug 1;140(30):9551-9557. doi: 10.1021/jacs.8b04531. Epub 2018 Jul 13.

Abstract

Emulating nature's protein paradigm, single-chain nanoparticles (SCNP) are an emerging class of nanomaterials. Synthetic access to SCNPs is limited by ultralow concentrations, demanding reaction conditions, and complex isolation procedures after single-chain collapse. Herein, we exploit the visible light photodimerization of styrylpyrene units as chain folding mechanism. Critically, their positioning along the polymer chain creates a confined environment, increasing the photocycloaddition quantum yields dramatically, enabling single-chain folding at unrivaled high concentrations without subsequent purification. Importantly, the enhanced photoreactivity allows for single-chain folding at λ = 445 nm LED-irradiation within minutes as well as via ambient light, enabling an unprecedented folding system. The herein demonstrated enhancement of quantum yields by steric confinement serves as a blueprint for all photochemical ligation systems.

Publication types

  • Research Support, Non-U.S. Gov't