Characterization of diterpene synthase genes in the wild rice species Oryza brachyatha provides evolutionary insight into rice phytoalexin biosynthesis

Biochem Biophys Res Commun. 2018 Sep 10;503(3):1221-1227. doi: 10.1016/j.bbrc.2018.07.028. Epub 2018 Jul 11.

Abstract

Cultivated rice (Oryza sativa; Os) produces a variety of labdane-related diterpenoids; not only phytohormone gibberellins (GAs) but also phytoalexins for defense including phytocassanes, momilactones and oryzalexins. Their carbon skeleton diterpenes are constructed from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP) or its diastereomer syn-CDP. These two-step reactions are successively catalyzed by homologs of the two diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of GAs; e.g. OsCPS4 and OsKSL8 that are involved in the biosynthesis of oryzalexin S, a rice phytoalexin. Oryza brachyantha (Ob) is the most distant wild rice species from Os among the Oryza genus. We previously reported that the Ob genome contains ObCPS_11g, ObKSL8-a, ObKSL8-b and ObKSL8-c for specialized metabolism at a locus similar to the OsKSL8 locus on chromosome 11. These Ob genes are closely related to OsCPS4 and OsKSL8, respectively. We herein characterize the diterpene synthase genes in Ob, using functional analyses and expression analysis. Recombinant OsKSL8 and ObKSL8-a showed the same in vitro function when syn-CDP or normal-CDP were used as substrates. Nonetheless, our results suggest that Ob produces normal-CDP-related diterpenoid phytoalexins, presumably via ObKSL8-a, while Os produces a syn-CDP-related phytoalexin, oryzalexin S, via OsKSL8. This difference must be due to the kinds of CPS that are present in each species; Os has OsCPS4 encoding syn-CPS, while Ob has ObCPS_11g encoding normal-CPS. Thus, we propose the evolutionary history underlying oryzalexin S biosynthesis: the gain of a syn-CPS was a critical event allowing the biosynthesis of oryzalexin S.

Keywords: Biosynthesis; Diterpene synthase; Evolution; Phytoalexin; Rice; Wild species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkyl and Aryl Transferases / genetics*
  • Alkyl and Aryl Transferases / metabolism
  • Diterpenes / metabolism*
  • Oryza / enzymology*
  • Oryza / genetics*
  • Oryza / metabolism
  • Phylogeny
  • Phytoalexins
  • Seeds / enzymology
  • Seeds / genetics
  • Sesquiterpenes / chemistry
  • Sesquiterpenes / metabolism*
  • Species Specificity

Substances

  • Diterpenes
  • Sesquiterpenes
  • Alkyl and Aryl Transferases
  • Phytoalexins