Electric Field Intensity Effects on the Microstructural Characteristics Evolution of Methyl Vinyl Silicone Rubber via Molecular Simulation

Molecules. 2018 Jul 26;23(8):1861. doi: 10.3390/molecules23081861.

Abstract

During ultra high voltage (UHV) transmission, the discharge caused by high intensity electric fields aggravates the aging process of external insulation materials used for composite insulators. The microstructural characteristics of its base material polymer-methyl vinyl silicone rubber-are the key basis for the performance of insulation materials under electric field exposure. Based on molecular dynamics simulations, a molecular model of methyl vinyl silicone rubber was established. Mechanisms influencing the microstructure evolution under electric fields had been studied at the atomic level. The results showed that the initial reaction characteristics of silicone rubber molecules involve the violent vibrated of all the methyl and vinyl atoms, and shortening of the chemical bonds. The neighboring groups were close to each other and generated different amounts of -Si-Si- bonds. This promoted the helical shrinkage of the molecule, and protrusion of the middle of the molecule which presented an inverted U shape. The high electric field greatly reduced the total energy of molecules, and the potential energy in particular was more severely destroyed, resulting in degradation of its structure. Besides, as the electric field intensity increased, the elastic modulus of the molecule gradually increased. It was shown that high electric fields would make the stiffness of silicone rubber become larger, and the brittleness to become stronger, which reduced the mechanical properties of materials, accelerating its aging. The results provide a theoretical basis for establishing the connection between the micro appearance and macro characteristics of materials, as well as reference values for the optimization of base materials used for making composite insulators.

Keywords: composite insulator; elastic modulus; electric field; methyl vinyl silicone rubber; molecular dynamics.

MeSH terms

  • Algorithms
  • Elastic Modulus
  • Electricity*
  • Kinetics
  • Molecular Conformation*
  • Molecular Dynamics Simulation*
  • Molecular Structure
  • Silicone Elastomers / chemistry*
  • Thermodynamics

Substances

  • Silicone Elastomers