Long-Life Lithium-Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires

Adv Mater. 2018 Sep;30(39):e1804149. doi: 10.1002/adma.201804149. Epub 2018 Aug 12.

Abstract

Developing high-energy-density lithium-sulfur (Li-S) batteries relies on the design of electrode substrates that can host a high sulfur loading and still attain high electrochemical utilization. Herein, a new bifunctional cathode substrate configured with boron-carbide nanowires in situ grown on carbon nanofibers (B4 C@CNF) is established through a facile catalyst-assisted process. The B4 C nanowires acting as chemical-anchoring centers provide strong polysulfide adsorptivity, as validated by experimental data and first-principle calculations. Meanwhile, the catalytic effect of B4 C also accelerates the redox kinetics of polysulfide conversion, contributing to enhanced rate capability. As a result, a remarkable capacity retention of 80% after 500 cycles as well as stable cyclability at 4C rate is accomplished with the cells employing B4 C@CNF as a cathode substrate for sulfur. Moreover, the B4 C@CNF substrate enables the cathode to achieve both high sulfur content (70 wt%) and sulfur loading (10.3 mg cm-2 ), delivering a superb areal capacity of 9 mAh cm-2 . Additionally, Li-S pouch cells fabricated with the B4 C@CNF substrate are able to host a high sulfur mass of 200 mg per cathode and deliver a high discharge capacity of 125 mAh after 50 cycles.

Keywords: boron carbide; electrochemical performance; first-principle calculations; high-loading cathodes; lithium-sulfur batteries.