Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: a multi-functional insight

J Pharm Biomed Anal. 2018 Oct 25:160:374-382. doi: 10.1016/j.jpba.2018.08.020. Epub 2018 Aug 10.

Abstract

The inhibitory action of F. halophila extracts (acetone, chloroform, and methanol) against key enzymes linked to diabetes (α-amylase, α-glucosidase), cognitive functions (acetyl cholinesterase (AChE), butyryl cholinesterase (BChE)), and hyperpigmentation (tyrosinase) was assessed. The mutagenic/antimutagenic activities were assessed and the phytochemical profile established by HPLC-MS/MS. The acetone extract showed the highest phenolic (55.22 mg GAE/g extract) and flavonoid (34.52 mg RE/g extract) contents. The chloroform extract was a potent inhibitor of cholinesterases (4.86 and 6.13 mg GALAE/g extract, against AChE and BChE, respectively). Cinnamic acid derivatives (methyl cinnamate, ferulic acid, methoxycinnamic acid isomer) were identified in the chloroform extract. Methanol extract showed potent inhibitory action against tyrosinase (137.63 mg KAE/g extract) and glucosidase (43.02 mmol ACAE/g extract). The chloroform extract (32.07 mg EDTAE/g extract) showed potent metal chelating potential. The neuroprotective action of the chloroform extract might be attributed to the metal chelating action coupled by the cholinesterase inhibitory potential. F. halophila showed no mutagenic capacity. When combined with 2-aminoflouren and 2-aminoanthracene, the acetone and chloroform extracts revealed excellent antimutagenicity in the presence of metabolic activation enzymes for Salmonella typhimurium TA98 and TA100 strains. The observed inhibitory effects of F. halophila against the studied enzyme suggest that this plant could be a promising source of bioactive phytochemicals for the management of clinical conditions.

Keywords: Biological potential; Ferula; Medicinal values; Natural agents; Phenolics; mutagenic/antimutagenic activities.

MeSH terms

  • Antioxidants / analysis
  • Antioxidants / pharmacology
  • Chelating Agents / analysis
  • Chelating Agents / pharmacology
  • Cholinesterase Inhibitors / analysis
  • Cholinesterase Inhibitors / pharmacology
  • Chromatography, High Pressure Liquid
  • Ferula / chemistry*
  • Glycoside Hydrolase Inhibitors / analysis
  • Glycoside Hydrolase Inhibitors / pharmacology
  • Monophenol Monooxygenase / antagonists & inhibitors
  • Mutagens / analysis
  • Mutagens / pharmacology
  • Phytochemicals / analysis*
  • Phytochemicals / pharmacology*
  • Plant Components, Aerial / chemistry
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology
  • Tandem Mass Spectrometry
  • alpha-Amylases / antagonists & inhibitors

Substances

  • Antioxidants
  • Chelating Agents
  • Cholinesterase Inhibitors
  • Glycoside Hydrolase Inhibitors
  • Mutagens
  • Phytochemicals
  • Plant Extracts
  • Monophenol Monooxygenase
  • alpha-Amylases