Two-Dimensional Ti3C2 MXene for High-Resolution Neural Interfaces

ACS Nano. 2018 Oct 23;12(10):10419-10429. doi: 10.1021/acsnano.8b06014. Epub 2018 Sep 12.

Abstract

High-resolution neural interfaces are essential tools for studying and modulating neural circuits underlying brain function and disease. Because electrodes are miniaturized to achieve higher spatial resolution and channel count, maintaining low impedance and high signal quality becomes a significant challenge. Nanostructured materials can address this challenge because they combine high electrical conductivity with mechanical flexibility and can interact with biological systems on a molecular scale. Unfortunately, fabricating high-resolution neural interfaces from nanostructured materials is typically expensive and time-consuming and does not scale, which precludes translation beyond the benchtop. Two-dimensional (2D) Ti3C2 MXene possesses a combination of remarkably high volumetric capacitance, electrical conductivity, surface functionality, and processability in aqueous dispersions distinct among carbon-based nanomaterials. Here, we present a high-throughput microfabrication process for constructing Ti3C2 neuroelectronic devices and demonstrate their superior impedance and in vivo neural recording performance in comparison with standard metal microelectrodes. Specifically, when compared to gold microelectrodes of the same size, Ti3C2 electrodes exhibit a 4-fold reduction in interface impedance. Furthermore, intraoperative in vivo recordings from the brains of anesthetized rats at multiple spatial and temporal scales demonstrate that Ti3C2 electrodes exhibit lower baseline noise, higher signal-to-noise ratio, and reduced susceptibility to 60 Hz interference than gold electrodes. Finally, in neuronal biocompatibility studies, neurons cultured on Ti3C2 are as viable as those in control cultures, and they can adhere, grow axonal processes, and form functional networks. Overall, our results indicate that Ti3C2 MXene microelectrodes have the potential to become a powerful platform technology for high-resolution biological interfaces.

Keywords: MXene; bioelectronics; neural interfaces; neural microelectrodes; neural recording electrodes; titanium carbide; two-dimensional materials.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry
  • Cell Survival
  • Cells, Cultured
  • Cerebellar Cortex / cytology
  • Cerebellar Cortex / metabolism
  • Electric Conductivity
  • Electric Stimulation
  • Electrodes
  • High-Throughput Screening Assays*
  • Nanostructures / chemistry*
  • Neural Networks, Computer
  • Neurons / cytology
  • Neurons / metabolism*
  • Particle Size
  • Rats
  • Rats, Sprague-Dawley
  • Surface Properties
  • Titanium / chemistry*

Substances

  • Biocompatible Materials
  • titanium carbide
  • Titanium