Formation and stability of NOM-Mn(III) colloids in aquatic environments

Water Res. 2019 Feb 1:149:190-201. doi: 10.1016/j.watres.2018.10.094. Epub 2018 Nov 9.

Abstract

Soluble Mn(III) species stabilized by natural organic matter (NOM) plays a crucial role in a number of biogeochemical processes. To date, current understanding of these phenomena has been primarily concerned on the occurrence and chemistry of soluble NOM-Mn(III) complexes; much less is known regarding the formation and stability of NOM-Mn(III) colloids in the environment. This presents a critical knowledge gap with regard to biogeochemical cycling of manganese and associated carbon, and for predicting the fate and transport of colloid-associated contaminants, nutrients, and trace metals. In this work, we have characterized the chemical and physical properties of humic acid based (HA)-Mn(III) colloids formed over a range of environmentally relevant conditions and quantified their subsequent aggregation and stability behaviors. Results show that molar C/Mn ratios and HA types (Aldrich HA (AHA) and Pahokee peat soil HA (PPSHA)) are critical factors influencing HA-Mn(III) colloidal properties. Both the amount and the stability of HA-Mn(III) colloids increased with increasing initial molar C/Mn ratios, regardless of HA type. The correlation between the critical coagulation concentration (CCC) and zeta potential (R2 > 0.97) suggests that both Derjaguin-Landau-Verwey-Overbeek (DLVO) type and non-DLVO interactions are responsible for enhanced stability of HA-Mn(III) colloids. For a given C/Mn ratio, PPSHA-Mn(III) colloids are significantly more stable against aggregation than AHA-Mn(III) colloids, which is likely due to stronger electrostatic interactions, hydration interactions, and steric hindrance. Further examination in real-world waters indicates that the HA-Mn(III) colloids are highly stable in surface river water, but become unstable (i.e. extensive aggregation) in solutions representing a groundwater-seawater interaction zone. Overall, this study provides new insights into the formation and stability of NOM-Mn(III) colloids which are critical for understanding Mn-based colloidal behavior(s), and thus Mn cycling processes, in aquatic systems.

Keywords: C/Mn ratios; Colloid formation; Colloid stability; HA types; NOM-Mn(III) colloids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Colloids*
  • Humic Substances*
  • Kinetics
  • Seawater
  • Soil

Substances

  • Colloids
  • Humic Substances
  • Soil