Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid

Mikrochim Acta. 2018 Dec 12;186(1):17. doi: 10.1007/s00604-018-3138-2.

Abstract

An ultra-sensitive sensor is described for the voltammetric determination of ascorbic acid (AA). A glassy carbon electrode (GCE) was modified with graphene oxide (GO), multi-walled carbon nanotubes (MWCNTs) and gold nanorods (AuNRs). GO was used to prevent the aggregation of MWCNTs. The integration of positively charged AuNRs reduces the overpotential and increases the peak current of AA oxidation. Figures of merit of this sensor, typically operated at a low working potential of 0.036 V (vs. Ag/AgCl), include a low detection limit (0.85 nM), high sensitivity (7.61 μA·μM-1·cm-2) and two wide linear ranges (from 1 nM to 0.5 μM and from 1 μM to 8 mM). The use of GO simplifies the manufacture and results in a highly reproducible and stable sensor. It was applied to the quantification of AA in spiked serum. Graphical abstract Graphical abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have provided the original format with the attachments named g.tif. Graphene oxide (GO) in combination with multiwalled carbon nanotubes (MWCNTs) and gold nanorods (AuNRs) were used to construct a sensing interface with outstanding electrocatalytic performance for ascorbic acid detection.

Keywords: Differential pulse voltammetry; Electrocatalysis; Electrochemical sensor; Hybrid material; Modified electrode.

Publication types

  • Research Support, Non-U.S. Gov't