Production of Protein-Complex Components Is Stoichiometric and Lacks General Feedback Regulation in Eukaryotes

Cell Syst. 2018 Dec 26;7(6):580-589.e4. doi: 10.1016/j.cels.2018.11.003. Epub 2018 Dec 12.

Abstract

Constituents of multiprotein complexes are required at well-defined levels relative to each other. However, it remains unknown whether eukaryotic cells typically produce precise amounts of subunits, or instead rely on degradation to mitigate imprecise production. Here, we quantified the production rates of multiprotein complexes in unicellular and multicellular eukaryotes using ribosome profiling. By resolving read-mapping ambiguities, which occur for a large fraction of ribosome footprints and distort quantitation accuracy in eukaryotes, we found that obligate components of multiprotein complexes are produced in proportion to their stoichiometry, indicating that their abundances are already precisely tuned at the synthesis level. By systematically interrogating the impact of gene dosage variations in budding yeast, we found a general lack of negative feedback regulation protecting the normally precise rates of subunit synthesis. These results reveal a core principle of proteome homeostasis and highlight the evolution toward quantitative control at every step in the central dogma.

Keywords: dosage compensation; feedback regulation; proportional synthesis; proteome homeostasis; ribosome profiling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Humans
  • Mice
  • Multiprotein Complexes / genetics
  • Multiprotein Complexes / metabolism*
  • Protein Biosynthesis*
  • Protein Subunits / genetics
  • Protein Subunits / metabolism
  • Ribosomes / genetics
  • Ribosomes / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Zebrafish

Substances

  • Multiprotein Complexes
  • Protein Subunits
  • Saccharomyces cerevisiae Proteins