A high current anodization to fabricate a nano-porous structure on the surface of Ti-based implants

J Mater Sci Mater Med. 2018 Dec 18;30(1):2. doi: 10.1007/s10856-018-6206-6.

Abstract

In this study, an oxide layer on Ti-based implants is fabricated by using a high current anodization (HCA) technique in the nitrate electrolyte. This layer is composed of micro-pits and nano-porous arrays in the honeycomb structure. The results show that both the roughness and the layer thickness are related to the reaction time, whereas the size of nano-pores has little to do with the anodization duration. Compared to the nano-tubular arrays constructed by the conventional anodization, this nano-porous layer shows significantly improved mechanical stability. Furthermore, the in vitro assay of osteoblasts shows that cells behaviors on this surface can be modulated by the topology of this special layer. A suitable hierarchical structure composed of micro-pits and nano-porous structure can significantly stimulate osteoblasts attachment, activity, spreading and ALP function. Therefore, this hierarchical surface layer may provide a promising approach, which endows the Ti-based implants with better stability and osseointegration.

MeSH terms

  • 3T3 Cells
  • Animals
  • Biocompatible Materials
  • Cell Adhesion
  • Cell Survival
  • Mice
  • Nanostructures*
  • Oxidation-Reduction
  • Porosity
  • Prostheses and Implants*
  • Stress, Mechanical
  • Titanium*

Substances

  • Biocompatible Materials
  • Titanium