Response of sugar metabolism in apple leaves subjected to short-term drought stress

Plant Physiol Biochem. 2019 Aug:141:164-171. doi: 10.1016/j.plaphy.2019.05.025. Epub 2019 May 31.

Abstract

For a comprehensive understanding of gene expression, enzyme activity and sugar concentrations in response to short-term water deficit in apple (Greensleeves), sugar-modulated gene expression and enzyme activities were analyzed. Water stress resulted in the accumulation of sorbitol, glucose, fructose, galactose and starch, accompanied by a significant reduction in photosynthesis and sucrose concentration. In response to short-term water deficits, the activities of aldose-6-phosphate reductase (A6PR; EC 1.1.1.200), sorbitol dehydrogenase (SDH; EC 1.1.1.14), neutral invertase (NINV; EC 3.2.1.26), sucrose synthase (SUSY; EC 2.4.1.13), and fructokinase (FK; EC 2.7.1.4) were higher, whereas cell wall invertase (CWINV; EC 3.2.1.26) and hexokinase (HK; EC 2.7.1.1) activities were lower. In addition, sucrose phosphate synthase (SPS; EC 2.4.1.14) activity increased during the initial stages of dehydration and then decreased as the drought strengthened. Transcript levels of MdA6PR, MdSDH1/2, MdNINV1/2, MdSUSY3, MdFK1/2/4, MdSOT1/2, MdSUC1-3, MdTMT2/3, MdvGT1, MdpGlcT1-4 were upregulated, whereas transcript levels of MdCWINV1/2, MdHK1/2/3/5, and MdTMT1 were downregulated after 6 days of water stress. These findings suggest that the sorbitol metabolism pathway is induced and high levels of hexose derived from photosynthetic products are transported into vacuoles for adjustment to the water deficit. Our results provide insights into the relationships between sugar levels and sugar-modulated gene and enzyme activity in response to the imposition of short-term water stress.

Keywords: Drought; Enzyme; Expression; Hexose; Sorbitol; Sucrose; Sugar.

MeSH terms

  • Carbohydrate Metabolism / genetics*
  • Cell Wall / metabolism
  • Droughts*
  • Fruit / metabolism
  • Gene Expression Regulation, Plant*
  • Glucosyltransferases / metabolism
  • Malus / genetics
  • Malus / physiology*
  • Photosynthesis
  • Plant Leaves / physiology*
  • Plant Proteins / metabolism
  • Plants, Genetically Modified / physiology
  • Sorbitol / metabolism
  • Stress, Physiological
  • Sucrose / metabolism
  • beta-Fructofuranosidase / metabolism

Substances

  • Plant Proteins
  • Sorbitol
  • Sucrose
  • Glucosyltransferases
  • sucrose synthase
  • sucrose-phosphate synthase
  • beta-Fructofuranosidase