Silicon Affects Root Development, Tissue Mineral Content, and Expression of Silicon Transporter Genes in Poinsettia (Euphorbia pulcherrima Willd.) Cultivars

Plants (Basel). 2019 Jun 17;8(6):180. doi: 10.3390/plants8060180.

Abstract

The effects of silicon (Si) on root development, mineral content, and expression of Si transporter genes in Euphorbia pulcherrima Willd. 'Flame', 'Mable Bell', 'Green Star', 'Pink Bell', and 'Peach Bowl' cultivars were investigated in this study. Stem cuttings in a propagation bench were drenched regularly with a solution containing either 0 (control) or 50 ppm of silicon (Si treatment) from potassium silicate (K2SiO3), with a 25 °C mean air temperature and 80% relative humidity (RH) under 70% shading. The results showed that the 'Flame' treated with Si had a significantly higher survival ratio as compared with that of the control (P ≤ 0.05) and that the Si treatment improved number of roots, length of longest root, fresh root weight, and dry root weight in all cultivars except 'Mable Bell'. Supplementary Si increased the content of magnesium (Mg) and decreased the content of boron (B) and zinc (Zn) in the roots. The content of sulfur (S) in the shoots was increased by supplementary Si. The relative expression of Lsi1 and Lsi2 was higher in 'Peach Bowl', while it was lower in 'Mable Bell' and 'Green Star', which may be caused by the differing accumulation of Si in the shoot. Overall, supplementary Si had beneficial effects during cutting propagation of poinsettia cultivars, although these effects were cultivar-dependent.

Keywords: cutting propagation; mineral content; poinsettia; root development; silicon transporters.