InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting

ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25236-25242. doi: 10.1021/acsami.9b06656. Epub 2019 Jul 2.

Abstract

While photoelectrochemical (PEC) water splitting is a very promising route toward zero-carbon energy, conversion efficiency remains limited. Semiconductors with narrower band gaps can absorb a much greater portion of the solar spectrum, thereby increasing efficiency. However, narrow band gap (∼1 eV) III-V semiconductor photoelectrodes have not yet been thoroughly investigated. In this study, the narrow band gap quaternary III-V alloy InGaAsP is demonstrated for the first time to have great potential for PEC water splitting, with the long-term goal of developing high-efficiency tandem PEC devices. TiO2-coated InGaAsP photocathodes generate a photocurrent density of over 30 mA/cm2 with an onset potential of 0.45 V versus reversible hydrogen electrode, yielding an applied bias efficiency of over 7%. This is an excellent performance, given that nearly all power losses can be attributed to reflection losses. X-ray photoelectron spectroscopy and photoluminescence spectroscopy show that InGaAsP and TiO2 form a type-II band alignment, greatly enhancing carrier separation and reducing recombination losses. Beyond water splitting, the tunable band gap of InGaAsP could be of further interest in other areas of photocatalysis, including CO2 reduction.

Keywords: InGaAsP; TiO; XPS; electron selective; photocathode; photoelectrochemical water splitting; photoluminescence.