Two π-Conjugated Covalent Organic Frameworks with Long-Term Cyclability at High Current Density for Lithium Ion Battery

Chemistry. 2019 Dec 5;25(68):15472-15476. doi: 10.1002/chem.201903733. Epub 2019 Oct 31.

Abstract

Organic lithium ion batteries (LIBs) are considered as one of the next-generation green electrochemical energy storage (EES) devices. However, obtaining both high capacity and long-term cyclability is still the bottleneck of organic electrode materials for LIBs because of weak structural and chemical stability and low conductivity. Covalent organic frameworks (COFs) show potential to overcome these problems owing to its good stability and high capacity. Herein, the synthesis and characterization of two π-conjugated COFs, derived from the Schiff-base reaction of 2,4,6-triaminopyrimidne (TM) respectively with 1,4-phthalaldehyde (PA) and 1,3,5-triformylbenzene (TB) by a mechanochemical process are presented. As anode materials for LIBs, the COFs exhibit favorable electrochemical performance with the highest reversible discharge capacities of up to 401.3 and 379.1 mAh g-1 at a high current density (1 A g-1 ), respectively, and excellent long-term cyclability with 74.8 and 72.7 % capacity retention after 2000 cycles compared to the initial discharge capacities.

Keywords: conjugation; covalent organic frameworks; high current density; lithium ion battery; long-term cyclability.