Dietary intake of probiotic kimchi ameliorated IL-6-driven cancer cachexia

J Clin Biochem Nutr. 2019 Sep;65(2):109-117. doi: 10.3164/jcbn.19-10. Epub 2019 Jul 27.

Abstract

Cancer cachexia is a syndrome accompanying weight loss, skeletal muscle atrophy, and loss of adipose tissue in patients with advanced cancer. Since interleukin-6 (IL-6) is one of core mediators causing cancer cachexia and kimchi can modulate IL-6 response, we hypothesized dietary intake of kimchi can ameliorate cancer cachexia. In this study, we studied preemptive administration of kimchi can ameliorate mouse colon carcinoma cells colon (C26) adenocarcinoma-induced cancer cachexia and explored anti-cachexic mechanisms of kimchi focused on the changes of muscle atrophy, cachexic inflammation, and catabolic catastrophe. As results, dietary intake of kimchi significantly attenuated the development of cancer cachexia, presented with lesser weight loss, higher muscle preservation as well as higher survival from cancer cachexia in mice. Starting from significant inhibition of IL-6 and its signaling, kimchi afforded significant inhibition of muscle specific ubiquitin-proteasome system including inhibition of atrogin-1 and muscle ring finger protein-1 (MuRF-1) with other muscle related genes including mitofusin-2 (Mfn-2) and PGC-1α. Significant inhibition of lipolysis gene such as adipose triglyceride lipase (ATGL) and hormone-sensitive ligase (HSL) accompanied with significant induction of fatty acid synthase (FAS) and sterol response element binding protein 1 (SREBP1) was achieved with kimchi. As gene regulation, IL-6 and their receptor as well as Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were significantly attenuated with kimchi. In conclusion, dietary intake of cancer preventive kimchi can be an anticipating option to ameliorate cancer cachexia via suppressive action of IL-6 accompanied with decreased muscle atrophy and lipolysis.

Keywords: C26 adenocarcinoma; IL-6; cancer cachexia; kimchi; muscle atrophy.